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Exploration in NetHack With Secret Discovery
Jonathan Campbell and Clark Verbrugge

Abstract—Roguelike games generally feature exploration prob-
lems as a critical, yet often repetitive element of gameplay.
Automated approaches, however, face challenges in terms of
optimality, as well as due to incomplete information, such as from
the presence of secret doors. This paper presents an algorithmic
approach to exploration of roguelike dungeon environments. Our
design aims to minimize exploration time, balancing coverage
and discovery of secret areas with resource cost. Our algorithm
is based on the concept of occupancy maps popular in robotics,
adapted to encourage efficient discovery of secret access points.
Through extensive experimentation on NetHack maps we show
that this technique is significantly more efficient than simpler
greedy approaches and an existing automated player. We further
investigate optimized parameterization for the algorithm through
a comprehensive data analysis. These results point towards better
automation for players as well as heuristics applicable to fully
automated gameplay.

Index Terms—Role playing games, Planning

I. INTRODUCTION

MANY video games place emphasis on the idea of explo-
ration of the unknown. In roguelikes, a popular subset

of Role-Playing Games (RPGs), exploration of the game space
is a key game mechanic, essential to resource acquisition
and game progress. The high level of repetition involved,
however, makes automation of the exploration process useful,
as an assistance in game design, for relieving player tedium in
relatively safe levels or under casual play, and to ease control
requirements for those operating with reduced interfaces [1].
Basic forms of automated exploration are found in several
roguelikes, including the popular Dungeon Crawl Stone Soup.

Algorithmic approaches to exploration typically aim at be-
ing exhaustive. Even with full information, however, ensuring
complete coverage can result in significant inefficiency, with
coverage improvement coming at greater cost as exploration
continues [2]. Diminishing returns are further magnified in the
presence of “secret rooms,” areas which must be intentionally
searched for at additional, non-trivial resource cost, and which
are a common feature of roguelike games. In such contexts, the
complexity is less driven by the need to be thorough, and more
given by the need to balance time spent exploring with respect
to amount of benefit accrued (area revealed, items collected).

In this work we present a novel algorithm for exploration of
an initially unknown environment. Our design aims to accom-
modate features common to roguelike games. In particular, we
aim for an efficient, balanced approach to exploration, consid-
ering the cost of further exploration in relation to the potential
benefit. We factor in the relative importance of different areas,
focusing on room coverage versus full/corridor coverage, and
address the existence of secret rooms (secret doors) as well.
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Our design is inspired by a variation of occupancy maps,
adapted from robotics into video games [3]. In this way we
can control how the space is explored, following a probability
gradient that flows from places of higher potential benefit.

Using the canonical roguelike NetHack as environment, we
compare this approach with a simpler, greedy algorithm more
typical of a basic automated strategy, as well as an existing
NetHack bot, BotHack, and optimal solution. NetHack gives us
a realistic and frequently mimicked game context, with uneven
exploration potential (rooms versus corridors), critical resource
limitations (every move consumes scarce food resources),
and a non-trivial, dungeon-like map environment, including
randomized placement and reveal of secret doors. Compared
to the greedy approach and BotHack, our algorithm shows
improvement in overall efficiency, particularly with regard to
discovery of secret areas. We enhance this investigation with
a deep consideration of the many different parameterizations
possible, showing the relative impact of a wide variety of
algorithm design choices.

Our design is intended to provide a core system useful in
higher level approaches to computing game solutions, as well
as in helping good game design. For the former we hope to
reduce the burden of exploration itself as a concern in research
into techniques that fully automate gameplay.

Specific contributions of this work include:
• We heavily adapt a known variation of occupancy maps to

the task of performing efficient exploration of dungeon-
like environments that do not contain secret areas.

• We further extend the exploration algorithm to address
discovery of secret areas. Locating and stochastically
revealing an unknown set of hidden areas adds notable
complexity and cost to optimizing such an algorithm.

• Our design is backed by extensive experimental work,
validating the approach and comparing it with a simpler,
greedy design and an existing automated player, as well
as exploring the impact of the variety of different param-
eterizations available in our approach.

This work builds on a previous short (poster) publication,
wherein we described the basic exploration algorithm [4]. Here
we significantly extend that work, incorporating discovery of
secret areas into the greedy and occupancy map algorithms
and performing additional experimental comparison in that
context. We also add a non-trivial regression analysis to better
understand the importance of the many parameters involved
in the algorithm design, as well as adding a comparison to a
well-known NetHack bot and to an improved optimal solution.

II. RELATED WORK

Automated exploration or mapping of an environment has
been studied in several fields, primarily including robotics, and
is also related to the problems of coverage and graph traversal.
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Exploration in robotics branches into many different
subtopics, differentiated by the type of environment to be
explored, amount of prior knowledge about the environment,
and accuracy of robotic sensors. One frequently-discussed
approach is simultaneous localization and mapping (SLAM),
where a mobile robot must map a space while keeping precise
its current position inside said space. Our game-based environ-
ment has a top-down view and thus position is always known,
so we can avoid this issue. Julia et al. [5] and Lavalle [6]
provide good surveys of robotic exploration algorithms, with
coverage on SLAM. Thrun [7] offers a more general survey
of robotic mapping with coverage of exploration.

One method popular in robotics for exploring unknown
environments is known as occupancy mapping [8], [9]. This
approach, used in conjunction with a robot and planning
algorithm, maps out an initially unknown space by maintaining
a grid of cells over the space, with each cell representing
the probability that the corresponding area is occupied (by an
obstacle/wall, e.g.). With this data structure, knowledge within
a certain confidence margin can be established about which
areas of the space are traversable, with data from different
sensors being combined to even out sensor inaccuracies.

This sort of representation of the observed map must then
be leveraged to decide where to move next for efficient
exploration. Strategies typically involve an ordering or choice
of frontiers to visit, sometimes determined by an evaluation
function which takes into account objectives like minimizing
distance travelled or exploring the largest amount of map
the fastest. Yamauchi described a strategy using occupancy
maps to always move towards the closest frontier in order to
explore a space [10], with a focus on how to detect frontiers
in imprecise occupancy maps. Gonzàlez-Baños and Latombe
discuss taking into account both distance to a frontier and
the ‘utility’ of that frontier (a measure of the unexplored area
potentially visible when at that position) [11], also taking into
account robotic sensor issues. We use a similar cost-utility
strategy for our evaluation function (with utility determined
by probabilities in the occupancy map, as described later).
Juliá et al. showed that a cost-utility method for frontier
evaluation explores more of the map faster than the closest
frontier approach, but in the end takes longer to explore the
entire map than the latter since it must backtrack to explore
areas of low utility [5]. We aim to not visit areas of low utility,
so this downside will not apply. Amigoni [12] presents further
discussion and comparison of frontier evaluation functions.

The exploration problem in robotics is also related to
the coverage path planning problem, where a robot must
compute a path that traverses the entirety of a known space.
A cellular decomposition of the space is used in many such
approaches. For example, Xu et al. presented an algorithm to
guarantee complete coverage of a known environment (con-
taining obstacles) while minimizing distance travelled based
on the boustrophedon cellular decomposition method, which
decomposes a space into slices [13]. Choset [14] provides a
comprehensive discussion and survey of selected coverage ap-
proaches. Pure algorithmic methods for coverage are related to
the traveling salesman problem (TSP) or shortest Hamiltonian
path problem. These algorithms need full knowledge of the

environment at start, and are thus not applicable to NetHack.
There have also been formulations of exploration as a graph

traversal problem. Kalyanasundarum and Pruhs describe the
‘online TSP’ problem as exploring an unknown weighted
graph, visiting all vertices while minimizing total cost, and
presented an algorithm to do so efficiently [15]. Koenig et al.
analyzed a greedy approach to explore an unknown graph (to
always move to the closest frontier), and showed that the upper
bound for worst-case travel distances for full map exploration
is reasonably small [16], [17]. Hsu and Hwang demonstrate
a provably complete graph-based algorithm for autonomous
exploration of an indoor environment [18].

Research into exploration has also been done in the con-
text of video games. Chowdhury and Verbrugge looked at
approaches to compute a tour of a known environment for
exhaustive exploration strategies for non-player characters in
video games [2]. Baier et al. proposed an algorithm to guide an
agent through both known and partially-known terrain to catch
a moving target in video games [19]. By contrast, our goal
is to find static areas (unvisited and possibly secret rooms),
not moving targets. Hagelbäck and Johansson explored the
use of potential fields to discover unvisited portions of a real-
time strategy game map with the goal of creating better game
AI [20]. Our work, in contrast, focuses on constrained explo-
ration in sparse, dungeon-like environments, where exhaustive
approaches compete with critical resource efficiency.

III. BACKGROUND

Three concepts underpin our work and will be briefly
discussed below: the particular flavour of occupancy maps
used as the basis for our exploration algorithm; the game used
for our research environment; and a short elucidation on the
concept of secret rooms and their presence in video games.

Occupancy Maps in Games

Using the aforementioned occupancy maps from robotics as
inspiration, Damián Isla created an algorithm geared towards
searching for a moving target in a video game context [21].
The algorithm has been used in at least one game to date [3].

Like the original occupancy map, a discrete grid of prob-
abilities is maintained over a space (e.g., game map), but
here a probability represents confidence in the corresponding
area containing the target or not, instead of simply relating to
traversability. A non-player character (NPC) can then use said
map to determine where best to move in order to locate the
target (e.g., the player).

The map is updated as follows. The NPC first observes
if the player is within its current field-of-view (FOV) and
the corresponding cells are set accordingly (1 for cell(s)
containing the player, and 0 otherwise). The NPC will then
begin moving towards the cell with the highest probability.
If the target is in sight, the NPC can move directly towards
them; otherwise, it can move towards the cell with the highest
probability. All probabilities in the map then diffuse to their
neighbours. Through diffusion, cells outside the FOV will
contain a probability value based on their closeness to the
last known player position, with a probability gradient flowing
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from that last known spot into adjacent areas which the player
may have moved to.

Diffusion for each cell n outside the NPC’s FOV at time t is
performed as follows (assuming each cell has 4 neighbours):
Pt (n) = (1− λ)Pt−1 (n) + λ

4

∑
n′∈neighbours(n) Pt−1 (n

′)
where λ ∈ [0, 1] controls the amount of diffusion.

Our implementation of occupancy maps borrows concepts
from Isla’s formulation, namely the idea of diffusion, which
is repurposed for an exploration context.

NetHack

NetHack is a popular roguelike video game created in 1987
and is used as the environment for our experiments. Gameplay
occurs on a two-dimensional text-based grid of size 80x20,
within which a player can move around, collect items, fight
monsters, and travel deeper into the Mazes of Menace. To
win the game, a player must travel through over 50 levels of
the dungeon, fight the high priest of Moloch and collect the
Amulet of Yendor, then travel back up through all the levels
while being pursued by an angry Wizard and finally ascend
through the five elemental planes [22].

Levels in NetHack consist of large, rectangular rooms (7-8
on average) connected by maze-like corridors. Levels can be
sparse, with many empty (non-traversable) tiles. For the most
part, levels are created using a procedural content generator,
an advantage for conducting research in exploration since an
algorithm can be tested on many different map configurations.
At the start of each level, the player can see only their current
room with the rest of the map hidden, and must explore to
uncover more. An example of a typical NetHack map is shown
in Figure 1; other maps can be seen in Figures 2 and 4.

Fig. 1. A game of NetHack where the player (‘@’ character, currently
in the lower-right room) has explored about half of the level. A typical
NetHack map is composed of corridors (‘#’) that connect rectangular
rooms. Room spaces (‘.’) are surrounded by walls (‘|’ and ‘-’), and
doors (‘+’, ‘.’), which could lead to other, unvisited rooms, be dead-
ends or circle around to already visited rooms.

Although map exploration is important, it is also exigent to
do so in a minimal fashion. Movement in NetHack is turn-
based (each move taking one turn), and the more turns made,
the more hungry one becomes. Hunger can be satiated by food,
which is randomly and sparingly placed within the rooms of a
level, as well as being obtainable through monster combat [23].
Most food does not regenerate after having been picked up, so

a player must move to new levels at a relatively brisk pace to
maintain supplies. A player that does not eat for an extended
period will eventually starve to death and lose the game [24].

In this context, it is critical to minimize the number of
actions taken to explore a level so that food resources are
preserved. Rooms are vital to visit since they may contain
food and items that increase player survivability, as well as
the exit to the next level (needed to advance further in the
game). Conversely, the corridors that connect rooms have no
intrinsic value. Some may lead to dead-ends or circle around
to already visited rooms. Exploring all corridors of a level is
typically considered a waste of valuable actions. Therefore, a
good exploration strategy will minimize visitation of corridors
while maximizing the number of rooms visited.

Several autonomous players in various states of maintenance
currently exist for NetHack. Currently, only BotHack has
successfully completed the game [25]. Another popular bot is
TAEB (The Amulet Extraction Bot), which features a modular
interface to easily support a variety of automatic players [26].

Secret areas
Secret areas are a popular element of game levels and moti-

vate comprehensive exploration of a space. These areas are not
immediately observable but must be discovered through extra
action on the player’s part. Secret areas can be a mechanism to
reward players for thorough exploration, sometimes containing
valuable rewards [27]. In certain genres, they can also confer a
sense of achievement for the player clever enough to find them.
Gaydos & Squire found that hidden areas in the context of ed-
ucational games are memorable moments for players and gen-
erate discussion amongst them [28]. Secret areas are perhaps
most prevalent in roguelikes, with the prototypical roguelike
games (Rogue, NetHack, et al.) all including procedurally-
generated secret areas. These procedurally-generated secret
areas differ from the ones discussed by Gaydos & Squire
since it could be mandatory to find them (if they happen to
contain the level exit), and it can become repetitive and costly
to continue attempting to discover them.

Not much work has been done in terms of algorithms
to search for secret areas. In terms of NetHack specifically,
BotHack employs a simple secret area detection strategy. If
either the exit to the next level has not yet been found or there
is a large rectangular chunk of the level that is unexplored
and has no neighbouring frontiers, it will start searching at
positions that face that area [25], [29].

NetHack implementation: Secret areas in NetHack are cre-
ated during level generation by marking certain traversable
spots of the map as hidden. Both corridors as well as doors
(areas that transition between rooms and corridors) can be
marked as hidden (with a 1/8 chance for a door, and 1/100
chance for a corridor) [30]. On average, there are 7 hidden
spots in a level. These hidden spots initially appear to the
player as regular room walls (if generated as doors) or as
empty spaces (if corridors) and cannot be traversed. The player
can discover and make traversable a hidden spot by moving
to a square adjacent to it and using the ‘search’ action, which
consumes one turn. The player may have to search multiple
times since revealing the secret position is stochastic.
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Searching consumes actions and thus food just like regular
movement. Therefore, the number of searches as well as the
choice of locations searched must be optimized to preserve
food resources. Intuitively, we would like to search walls
adjacent to large, unexplored areas of the map, for which
there do not appear to be any neighbouring frontiers. Similarly,
corridors that end in dead-ends are also likely candidates for
secret spots, as seen in Figure 2.

Fig. 2. A NetHack map with the player having visited all non-secret
positions. The vast majority of the map is still hidden, likely due to
the presence of a secret corridor immediately north of the player’s
current position.

With the NetHack method of secret spot generation in mind,
it becomes clear that it is not a good idea to attempt to discover
every single hidden spot on a map. Some secret doors or
corridors may lead nowhere at all, or perhaps lead to another
secret door/corridor which leads to an area that the player has
already visited. Depending on map configuration, the player
may be able to easily spot such an occurrence and avoid
wasting time searching in those areas. There is also a tradeoff
between finding all secret (disconnected) rooms in a map and
conserving turns; if only a small area of the map seems to
contain a hidden area, spending a large effort to discover it
may not be worthwhile.

IV. EXPLORATION APPROACH

Below we detail the basic exploration algorithm involving
occupancy maps, and contrast it with a simpler, greedy ap-
proach as well as an optimal solution. We begin by discussing
the modified NetHack environment in which the algorithms
will run, followed by an outline of each algorithm with and
without support for detecting secret areas.

Environment

A modified version of the base NetHack game is used to test
our exploration algorithms. Mechanics that might confound
results were removed, including monsters, weight limitations,
locked doors, and certain dungeon features that introduce an
irregular field of view. In addition, a switch to enable or disable
generation of secret doors and corridors was added. Starvation
was also removed, but since we start each experiment with a
regular hunger level, it is very unlikely for starvation to occur
in the bounds of a full map exploration.

The maps used in testing are those generated by NetHack for
the first level of the game. The same level generation algorithm
is used throughout a large part of the game, so using maps
from only the first level does not limit generality. Later levels
can contain special, fixed structures, but there is no inherent
obstacle to running our algorithm on these structures; we are
just mainly interested in applying exploration to the general
level design (basic room/corridor structure).

The algorithms below use the standard NetHack player field
of view. When a player enters a room, they are able to instantly
see the entirety of the room, including its walls and doors.
In corridors, only the immediate neighbours of the current
position can be observed. However, if the corridor continues
in a straight line to an open room door, then the door and a
small portion of the room past the door can be observed.

Greedy algorithm with no secret areas

A greedy algorithm is used as baseline for our experiments,
which simply always moves to the frontier closest to the
player. This type of approach is often formalized as a graph
exploration problem, where we start at a vertex v, learn
the vertices adjacent to v, move to the closest unvisited
vertex (using the shortest path) and repeat [16]. The algorithm
terminates when no frontiers are left. We also take into account
the particularities of the NetHack field of view as described
above; when we enter a room, all positions in the room are
set to visited, and its exits are added to the frontier list.

Note that this formulation will by nature uncover every
traversable space on the map, both rooms and corridors alike.

Optimal solution

For a lower bound on the average number of moves needed
to visit all rooms on a NetHack map, we present the optimal
solution. It will explore all rooms but not necessarily all
corridors, similar to the occupancy map algorithm below, but
must be given the full map in advance. It will start in the
centre of the initial room, and visit at least one door of each
room on the map, guaranteeing visitation of all rooms.

We find the optimal path by treating it as an instance of a
generalized shortest Hamiltonian path (GSHP) problem, which
can then be reduced to a generalized Travelling Salesman
Problem instance and run through a GTSP solver. The GSHP
problem tries to find the shortest path in a graph that visits
exactly (or at least) one vertex from each clustering of vertices.

Our NetHack map is transformed into a graph as follows.
Each room door will be represented as one vertex, and the
set of doors of each room will form their own cluster. The
center position of the player’s starting room, which we term
the ‘starting vertex’, will be placed by itself in another cluster.
The cost of an edge is equal to the length of the optimal
path between its vertices. We then reduce this graph to a
generalized Travelling Salesman Problem instance using the
following method. Two additional ‘dummy’ vertices are added
to the graph, each in their own cluster. The first dummy vertex
will have an edge to all other vertices with cost of 0, and the
second will have an edge to only the starting vertex and first
dummy vertex with cost of 0. This reduction was suggested by
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Lawler et al. [31] to translate a SHP problem to TSP, and we
adapt it for the generalized version by placing each dummy
vertex in their own cluster. We use the ‘GLNS’ solver [32] to
obtain the solution to this GTSP problem.

Occupancy maps with no secret areas

Our exploration strategy is described below. First, the use
of occupancy maps as map representation will be described,
followed by the application of diffusion and the frontier
selection strategy.

As stated previously, the goal of the algorithm is to optimize
exploration time by visiting as many rooms and as few
corridors on a map as possible, without having foreknowledge
of the map. In NetHack, rooms are much more likely to confer
benefit to the player than corridors. Items, including food
(necessary for survival), can spawn in rooms but not corridors;
further, corridors often contain many cycles and dead-ends.
Excess exploration of a map then leads to food waste and more
monster encounters (monsters spawn randomly every certain
number of turns), increasing the probability of player death.

Fig. 3. Visualization of an occupancy map corresponding to the
NetHack level of Figure 1. Brighter areas are more likely to contain
an undiscovered room. The player is shown as a circle in the lower-
right room, and current target frontier shown as nearby inset triangle.
Components are marked with a criss-cross pattern with rectangles
inset, and their associated frontiers are shown as large triangles.
Other frontiers that will not be visited (due to being in areas of low
probability and/or not having an associated component) are shown as
small white triangles. Components without frontiers are unmarked.

Representation: To represent the map of a NetHack level,
we use a structure similar to an occupancy map. However,
instead of simply keeping track of obstacles, we instead
assign probabilities to cells based on the likelihood that the
corresponding position in the NetHack map is part of an
unvisited room. If the corresponding position has already been
visited, or observed to be a wall or other impassable tile, then
the cell will have a probability of 0. Otherwise, it will have a
non-zero value representing the confidence of it being part of
an unvisited room, relative to all other cells in the map.

Initially, all probabilities in the occupancy map are set to
the same value, equal to 1/|total num cells|. As the agent
moves around, newly observed walls/impassable tiles will be
set to 0, and the map is renormalized to ensure total probability
sums to 1. Diffusion, discussed in the next section, also affects
the probability values.

One parameter of the algorithm allows for the cells on
the borders of the occupancy map to start with a fixed low
probability. This trick is done to discourage the agent from
exploring frontiers near the borders of the map, since those
often turn out to be dead-ends. As discussed further below,
by lowering the probability of cells adjacent to a frontier, the
algorithm will be less likely to visit them.

Figure 3 gives a visualization of a sample occupancy map,
with brighter areas corresponding to higher probabilities.

Diffusion: We here adapt the diffusion of probabilities
from Isla’s algorithm in order to better identify frontiers of
low utility, optimizing our exploration time by ignoring such
frontiers. Below, we discuss the reason for diffusion, as well
as how and when it occurs.

By diffusing probabilities, the zero probability of observed
space (visited rooms and corridors) will seep through the
map. Then, if a frontier is surrounded on all sides by low
probabilities (to a certain depth of surroundings), we can easily
identify that frontier as probably not leading to a new room,
and thus ignore it. Figure 3 shows these low utility frontiers
as small white triangles. This mechanism is a key part of the
algorithm’s efficiency, helping to decide which frontiers to
visit and which to ignore. It also helps to determine which
large, empty areas of the map could contain a new room,
discussed further below.

One detail of note is the minimum probability value for a
frontier to be considered of low utility. This value is called
the probability threshold. The threshold controls in a general
sense the cutoff for exploration in areas of lower benefit; a
higher value will mark more frontiers as unhelpful and thus
focus exploration on areas of higher potential benefit (giving
a tradeoff between time and amount explored). This threshold
can be fixed throughout exploration, or in another formulation,
vary depending on the percentage of map explored (ignoring
more frontiers as more of the map is explored).

Diffusion is performed by imparting each cell with a frag-
ment of the probabilities of its neighbouring cells, as given in
the diffusion formula in section III. Diffusion is only run when
a new part of the map is observed (i.e., new room or corridor),
so that probabilities will not change while travelling to a
frontier through explored space. Further, cells corresponding to
walls, impassable tiles or visited positions on the NetHack map
are always set to 0 and cannot be changed during diffusion.

Frontier selection (planning): The main method to optimize
exploration is to visit the frontiers that are most likely to lead
to an as yet unseen room. Some frontiers can be outright
rejected through the diffusion mechanism, but that still leaves
many frontiers whose utility is harder to judge. To get a better
idea of which frontiers are better than others and which should
not be visited at all, we split the unexplored areas of a NetHack
map into different rectangular areas, or components, each with
a certain probability of containing a room, and each being
matched to a single frontier. In this way, the utility of a frontier
can be based on the probabilities of its adjacent cells. Then,
each component will be evaluated to choose which one to
explore next. This procedure is detailed forthwith.

Components are created by treating the occupancy map as
a graph with edges between neighbouring cells of unexplored



IEEE TRANSACTIONS ON GAMES 6

space, that is, empty space (‘ ’) on a NetHack map. Each
disjoint set of unexplored cells is split into a series of maximal
rectangles, and each rectangle is considered a component. To
increase separation of components, edges are only created be-
tween cells that have more than a certain number of traversable
neighbours, in order to eliminate narrow rectangular alleys
of high probability cells. Cells are also ignored during edge
creation if their probability value is above a certain threshold
value (a parameter specified at start, which can be equal to or
differ from the earlier frontier probability threshold).

Some components are ignored due to insufficient size or
absence of neighbouring frontiers. If a component is smaller
than the minimum size of a NetHack room, there is no
point in trying to reach it. Likewise, if a component has no
neighbouring frontiers, it cannot contain a room since there
is no access point (unless secret doors/corridors are enabled,
as discussed later). A frontier is considered to neighbour a
component if there is a straight line through unexplored space
between it and the closest cell in the component.

One special case arises when the agent is in a corridor
and has partially observed a room directly at the end of the
corridor, as described in the Environment section. In this case,
the cells corresponding to the observed room are put into
their own component, not subject to any size restriction, and
visitation of this component is prioritized over all others, since
it is guaranteed to be a new room.

The visualization of a sample occupancy map in Figure 3
gives an idea of the process, with three components marked
using a criss-cross pattern. The unmarked area in the upper-
middle is ignored since it has no neighbouring frontiers.

The list of valid components is then passed through an
evaluation function to determine which best maximizes a
combination of utility and distance values. Utility is calculated
by summing the probabilities of all cells in the component,
normalized by dividing by the sum of all probabilities in the
map. Distance is calculated by taking the optimal distance
between the player and the neighbouring frontier closest to
the component, normalized by dividing by the sum of player-
frontier distances for each component. With the normalized
utility and distance values, we pick the component that max-
imizes (1 − α)norm prob + α ∗ (1 − norm dist), where α
controls the balance of the two criteria.

Once the best component is determined, the algorithm will
move to its associated frontier. On arrival, it will learn new
information about the game map, update the occupancy map,
and run diffusion. Components will then be re-evaluated and
a new frontier chosen. Exploration terminates when no valid
components remain.

Greedy algorithm with secret rooms

A trivial adaptation can be made to the basic greedy
algorithm in order to search for secret areas. When entering
a room, before proceeding to the next frontier, each wall of
the room is searched for secret doors for a certain number
of turns. Walls that do not have at least three empty spaces
adjacent to the space beyond them are ignored (since in such
case it would be not be possible for a secret corridor to exist

beyond). Searches are also performed in dead-end corridors. If
a secret door/corridor is discovered, it is added to the frontier
list as usual. Exploration ends when no frontiers or search
targets remain.

For efficiency, searching for secret doors in a room is done
by first choosing the unsearched wall closest to the player,
then moving to a spot adjacent to the wall that also touches
the most walls still needing to be searched (since searching
can be performed diagonally).

Note that this approach is not capable of finding all secret
corridors in a level, since they may rarely appear in corridors
other than dead-ends. However, searching all corridors would
be too taxing to handle this rare occurrence. The below occu-
pancy map approach also ignores these rare secret corridors.

Occupancy maps with secret rooms

The occupancy map algorithm has a natural extension to
support the discovery of secret door and corridor spots. In the
original case, components of high probability in the occupancy
map with no neighbouring frontiers would be ignored, but
here, these components are precisely those that we would
like to investigate for potential hidden doors/corridors. We
also immediately search at any dead-end corridor, due to the
relative rarity of non-secret dead-ends. Below we detail the
adjustments necessary for this extension.

The first modification relates to the component evaluation
function. Since these ‘hidden’ components have by definition
no neighbouring frontiers, there is no frontier to use when
calculating distance to player. Instead, we calculate distance
to a particular room wall or dead-end corridor adjacent to the
hidden component. We also ignore hidden components whose
area is below a specified minimum secret room size.

The selection of such a wall or dead-end corridor for a
hidden component requires its own evaluation function. This
function will also consider both utility and distance. Utility
is given by the number of searches already performed at that
spot and distance taken as length of the optimal path from
the spot to the player. Both search count and distance are
normalized, the former by dividing by the sum of search
counts for all walls, and the latter by dividing by the sum of
distances for all walls. We then pick the spot that minimizes
(1−σ)norm count + σ ∗norm dist, where σ is the parameter
that controls the balance of the two criteria. The value is min-
imized to penalize larger distance and higher search counts.

Walls whose distance from the component exceed a spec-
ified maximum will be ignored, as well as walls that have
already been searched over a specified maximum. Further, like
the greedy algorithm, walls must have at least three empty
spaces adjacent to the space beyond them. For similar reasons,
they must also have a straight line path through empty space
to the closest component cell less than 10 units away.

The selected wall/corridor spot is used in place of a frontier
in component evaluation which proceeds as described earlier.
If, after evaluation, a hidden component is selected, then
we will move to the closest traversable spot adjacent to the
component’s associated wall/corridor spot. In case of ties in
closest distance, the spot adjacent to the most walls will be
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chosen to break the tie, since searches performed at a position
will search all adjacent spots (including diagonally).

When the player reaches the search location, the algorithm
will use the search action for a specified number of turns
before re-evaluating all components and potentially choosing
a new search target or frontier to visit. If a secret door or
corridor is discovered while searching, it is added to the open
frontier list and its probability in the occupancy map is reset to
the default value. If nothing is revealed after a certain number
of searches (a parameterized value), then it will no longer be
considered as a viable search target; it is possible for a hidden
component not to contain a secret area.

Exploration terminates when no components are left, or only
hidden components remain, none having viable search targets.

Figure 4 presents a visualization of a sample occupancy
map with secret doors/corridors enabled and corresponding
NetHack map. The component on the left has no neighbouring
frontiers and is thus considered a hidden component; nearby
walls that will be considered for searching during evaluation
are marked with squares. Meanwhile, the right-most compo-
nent does have an open frontier (towards the lower-right), but
the player is currently prioritizing the search of a dead-end
corridor that may also open into that component.

Fig. 4. Visualization of a sample occupancy map (bottom) and corresponding
NetHack map (top) with secret doors/corridors enabled. Squares near each
component represent the room walls and dead-end corridors that satisfy the
distance and search count criteria. Components are identified by a plus-sign
pattern with rectangles inset.

V. EXPERIMENTAL RESULTS

Results will be shown below for the greedy and occupancy
map algorithms as a function of the exhaustive nature of their

searching, followed by results for the algorithms that can
search for secret areas. We will look first at the metrics to
be used for comparison of the algorithms.

Exploration metrics

To evaluate the presented exploration strategies, we use as
metrics the average number of actions per game (lower is
better) as well as average percentage of rooms explored, taken
over a number of test runs on randomized NetHack maps. As
will be seen below, the presented algorithms tend to do quite
well on these metrics. Thus, to get a more detailed view of
map exploration which penalizes non-exhaustive exploration,
we also use the percentage of maps in which all rooms were
explored, which we term the ‘exhaustive’ metric.

For algorithms that support detection of secret areas, two
further metrics are used: the average percentage of secret
doors and corridors found, and the average percentage of
‘secret rooms’ found. Although these metrics are adequate for
comparison purposes, neither are ideal, and it is important to
understand limitations in evaluating secret room discovery.

The average percentage of secret doors/corridors found is
problematic since it does not correlate well with actual benefit
– only a handful of secret spots will lead to undiscovered
rooms and so be worth searching for. Further, it is biased
towards the greedy algorithm, since that algorithm will search
all walls, and so have a higher chance to discover more secret
doors than the occupancy map algorithm, which will only
search areas likely to contain secret rooms.

The average percentage of ‘secret rooms’ found is also
problematic due to its nebulous definition. In NetHack, rooms
themselves are not marked as secret; marked instead are
individual corridors and doors that may or may not lead to
rooms disjoint from the non-secret part of the map. In this
context, we can only define ‘secret rooms’ to be any room
not directly reachable from the player’s initial position in the
level. However, this definition thus makes the metric dependent
on map configuration: a map could exist such that the player
actually starts in a ‘secret’ room, separated from the rest of
the map by a hidden door, and only that one door would have
to be found for a full score on this metric to be given.

Further, while almost all maps tend to contain secret doors
or corridors, only about half of all maps contain secret rooms
as defined above (in the other half, secret doors/corridors still
exist but do not lead anywhere). This discrepancy also skews
the secret room metric since maps containing no secret rooms
will still get a full score using that metric. We would in future
like to look into better metrics for discovery of secret areas
that address these issues.

Food: Although possible, we do not use amount of food
collected as a metric. Food in the form of items is usually
uniformly randomly distributed amongst rooms, and so is
highly correlated with the percentage of rooms explored.
Further, this type of food is very scarce; in our experiments,
less than half of all maps contained food, and those that did
almost always had only one food item. Taking into account
food pickup would thus not in any significant way alter the
presented exploration results, since we already aim to visit all
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Fig. 5. Average number of actions taken by the optimal solution,
greedy algorithm, BotHack, and occupancy map algorithm for ex-
haustive room exploration with best performing parameters. The av-
erage over 500 runs on different randomly-generated NetHack maps
is taken, with standard deviation presented as error bars. Note that
the high standard deviation for all algorithms is due to the variance
in NetHack map size and structure. P-value for occupancy map
algorithm compared to greedy and BotHack is < 0.01, representing
a significant difference.

rooms, and deviating to pick up food in a room would only add
5-10 actions on average in half of the runs for all algorithms.

The other type of food comes from monsters; on death,
monsters drop corpses, some of which can be eaten. However,
inclusion of pickup of this food source would require monster
combat to be integrated into our approach, which is a signifi-
cant component on its own. We therefore choose to focus for
now on the pure exploration method.

Exhaustive approaches

Figure 5 presents results for the exhaustive exploration
approaches (those that explore all rooms on a map). Each result
is an average over 500 runs on different randomly-generated
NetHack maps. The greedy algorithm comes in at 360 average
actions per game, while the average for the fastest occupancy
map model (with parameters that gave complete exploration
on 98% of all runs) is 252 actions. We also show the average
actions for BotHack, a general automated bot for NetHack,
which comes in at 308 actions. To obtain the result, we modify
BotHack to not search for secret doors/corridors, and terminate
upon deciding to go to the exit of a level.

The greedy algorithm is slowest since it by nature explores
all corridors, while the occupancy map algorithm limits explo-
ration to areas likely to contain rooms. The greedy algorithm is
also a bit more reliable for complete room discovery than the
occupancy map algorithm: we cited in the figure the occupancy
map model that discovered all rooms in 98% of runs, meaning
that a small number of runs failed to discover all rooms on
the map (missing one or two rooms in those cases).

In the same figure we present the result for the optimal
solution for room visitation, which visits all rooms in 101
actions on average. This approach can only be applied to a
fully-known map, and so does not lend itself to exploration,
but is instructive as a lower-bound.

To further break down the results of Figure 5 and compen-
sate for the large variance in the number of rooms present in
NetHack maps, we show the average actions taken by each
algorithm per number of map rooms in Figure 6. The figure
shows that as the number of rooms increases, the average
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Fig. 6. Average number of actions taken with respect to number of
rooms per map by the optimal solution, greedy algorithm, BotHack,
and occupancy map algorithm for exhaustive room exploration with
best performing parameters. The average over 500 runs broken down
per number of map rooms is taken, with standard deviation presented
as error bars.

actions of all algorithms rise linearly, but the occupancy map
algorithm rises at a much slower rate than the greedy algorithm
or BotHack. Thus, the occupancy map algorithm may be more
efficient at handling more complicated or dense maps than the
other two. The further variance that still exists in these results
is due to the other randomness-induced properties of NetHack
maps such as room location and corridor structure.

Non-exhaustive approaches

Exhaustive approaches are fine in certain circumstances,
but it is often acceptable to occasionally leave one or two
rooms on a map unexplored, especially when there is a cost to
movement. Figure 7 gives the results for the best-performing
non-exhaustive occupancy map models in terms of number
of actions taken versus percentage of rooms explored. Each
model represents an average over 200 runs using a unique
combination of model parameters. (A grid search over the
parameter space was performed – the models shown lie on
the upper-left curve of all models.)

As seen in the figure, there is a mostly linear progression
in terms of the two metrics. The relationship between the
‘exhaustive’ metric and total percentage of explored rooms
is also consistent, with both linearly increasing.

The figure also shows that by sacrificing at most 5% of room
discovery (or about 20% of exhaustive room discovery) on
average, the average number of actions taken can be decreased
to 200, compared to the 255 average actions of the exhaustive
(98%) approach.

Parameters: To determine the importance of the various pa-
rameters of the occupancy map algorithm, a linear regression
was performed. Parameter coefficients for average actions and
percentage of rooms explored under the ‘exhaustive’ metric
are shown in Figure 8. R-squared values for the regression
were 0.781/0.521 (for average actions and room exploration)
on test data. Running a random forest regressor on the same
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Fig. 7. Occupancy map models with parameters that best minimize
average actions per game and maximize percentage of rooms ex-
plored. Each symbol pair represents the average over 200 runs using
a different combination of model parameters. The triangles show the
result under the ‘exhaustive’ metric and the corresponding squares
show the total percentage of rooms explored.

data gave the same general importances for each parameter
with more confident r-squared values of 0.913/0.819, but those
importances are not presented here due to lack of indication
of the correlation direction.

Diffusion factor
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Frontier radius
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Coefficient for average number of actions Coefficient for all room exploration percentage

Fig. 8. Linear regression coefficients for average number of actions
and percentage of rooms explored with the occupancy map param-
eters as independent variables. Train/test data split is 70%/30% and
dataset size is 5,823 (each datum being the result for a different
combination of parameters).

The coefficients indicate that parameters directly associ-
ated with probabilities in the occupancy map are most ef-
fective with respect to average actions and percentage of
rooms explored. These parameters include the diffusion fac-
tor (how much to diffuse to neighbours), border probability
multiplier (how low the border cells should start at), both
probability thresholds (at what probability to ignore fron-
tiers/components), and whether to vary the threshold as more
of the map is explored. The border diffusion is probably
important due to the small (80x20) map size; on larger maps,
it is less likely that this parameter would have such an impact.

The specific parameter values that led to the fastest per-
forming exhaustive exploration model (presented in Figure 5)
were as follows: diffusion factor of 0.65, distance importance
of 1, border multiplier of 0.35, minimum room size of 5, DFS
min. neighbours of 7, frontier probability threshold of 0.35,
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Fig. 9. Greedy algorithm with support for secret door/corridor detec-
tion with labeled values showing number of searches per wall param-
eter. The average percentage of secret rooms found is represented by
diamonds while average percentage of secret doors/corridors found
is represented by stars.

component threshold of 0.45, vary threshold set to false, and
frontier radius of 2. Distance factor (importance of distance in
component evaluation) is kept constant to 1 in all experiments
since it was shown to perform the best in early trials.

Secret rooms

Greedy algorithm for secret rooms: Figure 9 shows the
results for the greedy algorithm with support for secret de-
tection in terms of average actions versus exploration. Each
symbol pair represents a different setting for the number
of searches per wall parameter (the number of times each
wall/dead-end corridor will be searched). Both the average
percentage of secret rooms found and average percentage of
secret doors/corridors found are displayed.

As expected, both metrics increase as the number of
searches per wall increases, plateauing at around 95% dis-
covery of secret rooms and 90% of secret doors/corridors at
around 1750 average actions per game. As mentioned earlier,
the algorithm will only search for secret corridors in dead-
ends, so the 10% of hidden spots not found at 30 searches per
wall is most probably from secret corridors occurring (rarely)
in other locations.

Another observation is that when the number of searches
per wall is set to 0, the algorithm is reduced to the regular
greedy algorithm, with almost no secret doors/corridors being
found (no searching is performed, but it is possible to acci-
dentally discover a hidden spot by moving next to it). The
approximately 50% score for the secret rooms metric is due
to the fact that, in that percentage of runs, there were no secret
rooms at all, thus giving 100% exploration as mentioned in
the metrics discussion.

Occupancy maps for secret rooms: Figure 10 gives the
results for the best-performing secret-detecting occupancy map
models in terms of number of actions taken versus secret
area exploration. Each model represents an average over 200
runs using a unique combination of model parameters. (A grid
search over the parameter space was performed; the models
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Fig. 10. Occupancy map models with support for detecting secret
doors/corridors, with parameters that best minimize average actions
per game and maximize exploration of secret rooms. The result for
BotHack is shown, encircled. Diamonds represent the percentage of
secret rooms explored, while the corresponding stars represent the
percentage of secret doors/corridors explored.

shown lie on the upper-left curve of all models.) The result
for BotHack is also shown.

Results here are much better than the greedy algorithm,
with approximately 90% secret room exploration at under
500 actions. The discrepancy between this result and the
greedy algorithm (over 1100 actions for 90%) is because the
occupancy map model has global knowledge of the map and
can target particular walls for searching, in contrast to the
greedy algorithm which searches almost every wall.

This global knowledge also explains the much lower per-
centage of secret doors/corridors discovered (about 30% for
the model exploring 90% of secret rooms) compared to the
greedy algorithm (80% for the model exploring the same
percentage of secret rooms). This result is expected since
exploration of secret doors/corridors only weakly correlates
with secret room exploration (only a few secret doors/corridors
will actually lead to otherwise inaccessible rooms).

Meanwhile, the occupancy map algorithm performs about
the same as BotHack in terms of secret room discovery. The
advantage with our algorithm is that it can be parameterized
to do more or less exhaustive searching for secret doors,
depending on the number of actions that can be spent.

One interesting result is the high amount of secret
doors/corridors found by BotHack compared with our algo-
rithm at the same number of actions/secret room exploration
(about a 20% difference). We speculate that this difference
is because BotHack not only searches at locations likely to
lead to secret rooms, but also searches to find ‘shortcuts’
back to visited space, decreasing travel time between frontiers.
However, this behaviour also increases the number of actions,
and therefore does not translate into a lower number of actions
than our algorithm, which finds the same percentage of secret
rooms but less secret door/corridor shortcuts.

Importances of the parameters for the secret-detecting oc-
cupancy map algorithm are shown in Figure 11. These impor-
tances were calculated by performing a linear regression on

the model results. R-squared values for the regression were
0.742/0.809 (for average actions and secret room exploration)
on test data. We here keep the distance factor (importance of
distance in component evaluation) to 1, wall distance factor to
1, vary probability threshold to False, and number of searches
and maximum searches per wall to 10, to reduce the grid
search computation time.

Diffusion factor
Border prob. multiplier

Minimum room size
DFS min. neighbours

Frontier prob. threshold
Component prob. threshold

Frontier radius
Minimum wall distance

Minimum secret room size

-175 -140 -105 -70 -35 0 35 70 105 140 175

Coefficient for average number of actions Coefficient for secret room exploration percentage

Fig. 11. Linear regression coefficients for average number of actions
and percentage of secret rooms explored with the secret-detecting
occupancy map parameters as independent variables. Train/test data
split is 70%/30% and dataset size is 1,792 (each datum being the
result for a different combination of parameters).

The importances show that the probability-related parame-
ters (diffusion factor, border multiplier and probability thresh-
olds) continue to have a large impact on the average actions
metric, as well as on the secret room exploration metric. The
minimum secret room size also has a large impact, greater
than the impact of the minimum regular room size. This result
suggests that components that can contain secret rooms are on
average larger than regular components. These components
without nearby frontiers could require more ‘padding’ space
for corridors that connect a secret room to observed space.
Regular components, conversely, have frontiers that can be
located much more closely to an unvisited room and thus
require less padding space.

VI. CONCLUSIONS AND FUTURE WORK

Automated exploration is an interesting and surprisingly
complex task. In strategy or roguelike games, the tedium
of repetitive movement during exploration is a concern for
players, and offering efficient automation can be helpful.
Exploration is also a significant sub-problem in developing
more fully automated, learning AI, and techniques which can
algorithmically solve exploration can be useful in allowing
further automation to focus on applying AI to higher level
strategy rather than basic movement concerns.

In this work we detailed an algorithm for efficient ex-
ploration of an initially unknown environment. Inspired by
the occupancy map algorithm by Damián Isla for tracking a
moving target, we built an occupancy map approach to select
frontiers to visit when performing exploration of interesting
areas of a map, while also considering complete coverage.
Our design notably improves over a more straightforward,
greedy design, particularly in the presence of secret areas,
where exploration cost versus benefit is especially important.

Our further work on the occupancy map algorithm aims
at increasing efficiency in exploration. In particular, a ‘lo-



IEEE TRANSACTIONS ON GAMES 11

cal’ diffusion of probabilities (within a radius of the player
position) instead of the current global diffusion may prove
fruitful to explore. Further verification of the algorithm on
other video games with different map configurations would
also be interesting.
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